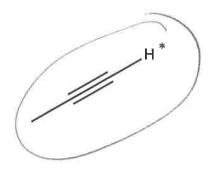
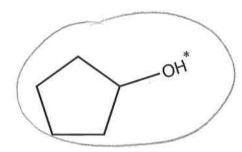

Gen-Chem #4: Acid-Base Basics


- **1.)** Hey, gang! Now that we've dabbled a bit with structure-drawing, let's tackle another important skill we need for our organic toolbox: Acid-Base Chemistry. Below are a bunch of acid-base reactions at equilibrium. The question is, what side is favored at equilibrium? Well, that's your job to figure out: Using the 5 acid-base rules we've discussed, tell me **which way** the equilibrium is favored. I have full faith in you .
- *Remember the 5 rules: Size, electronegativity, hybridization, resonance, and inductive effect

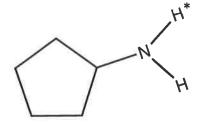
2.) Well done, but on to the next one: Here, you need to \underline{draw} resonance structures for the conjugate bases of H₂SO₄ and H₃PO₄ (HSO₄ and H₂PO₄, respectively). Afterwards, flex that acid-base knowledge of yours and provide a BRIEF explanation as to why $\underline{\text{H}_2\text{SO}_4}$ is a $\underline{stronger}$ acid than H₃PO₄ (said another way, HSO₄ is a more stable conjugate base than H₂PO₄, right? But, I bet you were already thinking that).

$$0.075 \longrightarrow 0.08 \longrightarrow$$

3.) All right, one more stop on this worksheet. Displayed below will be sets of 2 structures, both containing a starred (*) hydrogen. Circle the structure with the more acidic hydrogen, and then let's call it a wrap. Finish strong!


c.)

*HF



Resonance

d.)

Electronegativity

